Однако Аристотель не останавливается здесь перед фактом отсутствия «среднего термина», а стремится вскрыть подлинную причину самой причины того, что сумма углов треугольника равна двум прямым. При этом он указывает на ошибку «постулирования основания», часто совершаемую геометрами. «Так поступают, например, те, – пишет Аристотель, – кто думает, что описывают параллельные линии. В самом деле, они, сами того не зная, в основу доказательства берут нечто такое, что само не может быть доказано, если линии не параллельны» (Там же. – С. 237). Действительно, поскольку данная основа, т.е. теорема о сумме внутренних углов треугольника, здесь сама опирается на свойство параллельности двух линий, то возникает логический круг, и Аристотель прямо замечает, что «если бы кто-либо захотел доказать, что прямые линии не пересекаются, он мог бы подумать, что доказательство этого возможно потому, что это свойство имеется у всех прямых линий. Но это не так, поскольку доказывать следует не то, что углы равны при каких-то определённых условиях*, а то, что они равны при любых условиях» (Аристотель. Вторая аналитика, 74 а 10-15. – Там же. – С. 266). «И если бы не было другого треугольника, кроме равнобедренного, то свойство иметь [в совокупности] два прямых угла казалось бы присущим треугольнику, поскольку он равнобедренный» (Там же).
Из вышеприведённого текста можно заключить, что Аристотель рассматривал процесс подлинного описания параллельных линий независимо от всякого рода доказательств данной теоремы, «так как иное по своей природе познаётся через само себя… а именно начала познаются через самих себя» (Аристотель. Аналитика первая, 64 б 35).
Но именно вопрос о начале всегда и интересовал Аристотеля, который полагал, «что для начал нет доказательств» (Аристотель. Аналитика вторая, 90 б 25) и искал подлинное начало доказательства, как мы уже отмечали ранее, в сфере аксиоматического знания. Вероятнее всего, Аристотель решал вопрос о выборе наиболее подходящей аксиомы параллельных линий. Возможно, что один из вариантов такой аксиомы был приведён самим Аристотелем. Во всяком случае, Омар Хайям в «Комментариях к трудностям во введении книги Евклида» приводит так называемый четвёртый принцип, заимствованный у Аристотеля: «Две сходящиеся прямые линии пересекаются, и невозможно, чтобы две сходящиеся прямые линии расходились в направлении схождения» (См.: Розенфельд Б.А., Юшкевич А.П. Указ. соч. – С. 11).
Каждое из двух утверждений данного принципа по существу равносильно пятому постулату Евклида. И они ценны именно тем, что расчистили почву для первой в истории геометрии открытой замены пятого постулата эквивалентным ему постулатом, для первой теории параллельных, в которой доказательство пятого постулата основано не на «постулировании основания», а на другой, более очевидной аксиоме** (Там же. – С. 66). О. Хайям не совершил логической «ошибки», доказывая пятый постулат, как его предшественники; его ошибка совсем иного рода, и она становится очевидной лишь с точки зрении уже самих неевклидовых геометрических систем. Не останавливаясь здесь на разборе самого доказательства О.Хайяма, отметим лишь, что в ходе него были сформулированы первые теоремы гиперболической и эллиптической неевклидовых геометрий (См.: Там же. – С. 73). В этом и состоит как раз историческое значение всей теории доказательства у Аристотеля, ибо последний философски предвосхитил ту тенденцию, которая, начиная с Омара Хайяма, затем через Саккери и Ламберта (первые теоремы неевклидовой геометрии здесь получают, наконец, своё оформление) привела к Гауссу, Лобачевскому, Бойяи и Риману. Эта тенденция является ведущей при выяснении предпосылок возникновения неевклидовых геометрий.
Однако не следует забывать и то, что ошибки «постулирования основания» тоже сыграли определённую роль, поскольку у математиков крепла уверенность в невозможности доказать пятый постулат, оставаясь в рамках системы аксиом геометрии Евклида.
Следует отметить также, что Аристотель приводил примеры из геометрии не только для того, чтобы ими иллюстрировать положения логики, но и использовал эти примеры дли критики философских школ прошлого. Например, разбирая концепцию Эмпедокла о попеременном преобладании Любви и Вражды, Аристотель говорит, что «и такое утверждение следует не только высказывать, но и указывать для него определённую причину… Вообще же нельзя считать достаточным началом положение, что всегда так есть или происходит, на что Демокрит сводит природную причинность, что, дескать, так и прежде происходило, а начала этого «всегда» не считает нужным искать. … Ведь и треугольник имеет углы, всегда равные двум прямым, однако причина этой вечности лежит в другом; для начал же, которые существуют вечно, такой другой причины нет» (Аристотель. Соч. в 4-х т.: Т. 3. – С. 225).